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Abstract
The termination of many clinical trials of amyloid-targeting 
therapies for the treatment of Alzheimer’s disease (AD) has 
had a major impact on the AD clinical research enterprise. 
However, positive signals in recent studies have reinvigorated 
support for the amyloid hypothesis and amyloid-targeting 
strategies. In December 2019, the EU-US Clinical Trials on 
Alzheimer’s Disease (CTAD) Task Force met to share 
learnings from these studies in order to inform future trials 
and promote the development of effective AD treatments. 
Critical factors that have emerged in studies of anti-amyloid 
monoclonal antibody therapies include developing a better 
understanding of the specific amyloid species targeted by 
different antibodies, advancing our insight into the mechanism 
by which those antibodies may reduce pathology, implementing 
more comprehensive repertoires of biomarkers into trials, and 
identifying appropriate doses. Studies suggest that Amyloid-
Related Imaging Abnormalities – effusion type (ARIA-E) are a 
manageable safety concern and that caution should be exercised 
before terminating studies based on interim analyses. The Task 
Force concluded that opportunities for developing effective 
treatments include developing new biomarkers, intervening in 
early stages of disease, and use of combination therapies.

Key words: Alzheimer’s disease, dementia, amyloid hypothesis, 
monoclonal antibody treatment, BACE inhibitors, combination 
therapy.

Introduction

Despi te  encouraging resul ts  f rom the 
aducanumab Phase 1 and BAN2401 Phase 2 
anti-amyloid antibody clinical trials, amyloid-

beta protein (Aß)-based strategies for the treatment of 
Alzheimer’s disease (AD) appeared to take a crippling 
blow in March 2019 when Biogen announced it was 
terminating two clinical trials (EMERGE and ENGAGE) 
of the anti-Aß monoclonal antibody aducanumab based 
on the results of an interim analysis demonstrating a 
lack of benefit or ‘futility.’ The field had another major 
challenge in July when Novartis, Amgen, and the 
Banner Alzheimer’s Institute announced termination of 
pivotal trials of the beta-site amyloid precursor protein 
cleaving enzyme  (BACE) inhibitor umibecestat after an 
interim analysis identified cognitive worsening in trial 
participants. This marked the fifth failed BACE inhibitor 
in less than two years, two with trials stopped because 
of adverse events (Merck’s verubecestat and Janssen’s 
atabecestat) and two trials stopped for lack of efficacy 
(Astra Zeneca and Eli Lilly’s lanabecestat and Eli Lilly’s 
LY3202626) (1–3). A fifth BACE inhibitor trial of Eisai 
and Biogen’s elenbecestat was halted in September 2019 
due to an unfavorable risk/benefit profile (4). Trials for 
another anti- Aß monoclonal antibody, Genentech and 
Roche’s crenezumab, were terminated in 2019 for futility 
(5).      

Then, in October, a stunning reversal: Biogen 
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announced that the futility analysis in the aducanumab 
trial was misleading. Analysis of a larger data set 
indicated that aducanumab did indeed slow cognitive 
decline in trial participants who received a higher dose 
of the drug for longer periods of time in one of the two 
studies. Following this announcement, Biogen indicated 
they planned to submit aducanumab to the U.S. Food 
and Drug Administration (FDA) for regulatory approval. 
Any form of approval for aducanumab has the potential 
to transform the AD field, providing hope for patients 
and researchers alike. Regulatory success could also 
reinvigorate support for the amyloid cascade hypothesis, 
which posits that deposition of Aβ in the brain leads to 
the neurodegeneration and dementia that characterize 
AD. This hypothesis has driven the development of 
AD therapeutics for decades. Secretase inhibitors block 
production of Aβ, while anti-Aβ antibodies are designed 
to clear Aβ and prevent the formation of amyloid 
plaques as well as neutralize soluble Aß oligomers. 
Prior to the announcement of aducanumab’s potential 
beneficial effects, no secretase inhibitor and only two 
monoclonal antibodies --- BAN2401 and gantenerumab 
--- had preliminary evidence of possible efficacy against 
Aß, and there was much speculation in the field that 
the amyloid hypothesis was dead or at least unhelpful 
in guiding development of AD therapeutics. However 
substantial emerging evidence supports the amyloid 
cascade hypothesis (6). 

To better understand the implications of these clinical 
trial results and the future of amyloid-based therapies, 
the European Union and United States Clinical Trials 
on Alzheimer’s Disease Task Force (EU/US CTAD-TF) 
convened a meeting in San Diego on December 4, 2019, 
bringing together industry scientists involved in clinical 
trials of anti- Aß and other AD therapies along with 
representatives from pharmaceutical, biotechnology, 
diagnostics, and medical device companies, academic 
researchers, clinicians, and non-profit organizations. 
Their goal was to articulate lessons learned from these 
trials with the hope of enabling future successful trials 
that will lead to the approval of effective treatments for 
AD.   

Learnings from trials of anti-amyloid 
monoclonal antibody trials

The Task Force discussed five anti-amyloid 
monoclonal  ant ibody therapies  current ly  in 
clinical development: aducanumab (7), BAN2401 
(6), gantenerumab (8), solanezumab (9–13) , and 
donanemab. Other anti-amyloid monoclonal antibodies 
(e.g., crenezumab) are also in development (5, 14). As 
summarized in Table 1, these antibodies target different 
forms of amyloid, may have different mechanisms of 
action, and are being tested for efficacy at different stages 
of disease. 

The importance of dose

The futility analysis in the ENGAGE and EMERGE 
aducanumab trials – two identically designed Phase 
3 studies -- was based on a pooled interim dataset of 
approximately 50% of enrolled participants using a 
probability calculation that assumed non-heterogeneity 
between the two studies. A subsequent analysis of a 
larger dataset, however, revealed that protocol 
amendments allowing increased dosing in apolipoprotein 
E epsilon 4 (APOE4) carriers had differential effects on 
the two studies due to the relative timing of enrollment. 
This analysis demonstrated a statistically significant 
reduction in clinical decline across multiple clinical 
endpoints among early AD patients in EMERGE, likely 
due to high dose exposure to the drug.  Participants in 
the ENGAGE trial who had received higher doses (10 
mg/kg) for at least 10 doses had clinical effects similar 
to those of the EMERGE participants.  Amyloid positron 
emission tomography (PET) studies demonstrated dose-
dependent reduction of brain amyloid deposition across 
both trials.  

Other trials have also demonstrated substantial dose-
related amyloid lowering. Study 201 of BAN2401 used 
an adaptive randomization design with six arms to 
understand the impact of dose and minimize the number 
of participants treated with ineffective doses. The highest 
dose (10 mg/kg biweekly) produced the greatest slowing 
of disease progression and most robust reduction in brain 
amyloid levels compared to placebo and is used in the 
recently-launched Phase 3 Clarity AD study. 

Open-label extensions of two early Phase 3 
gantenerumab trials, in which study participants were 
assigned one of five titration schemes, also showed that 
five times higher dose of ganternerumab than was used 
in the earlier phase 3 studies drove increased amyloid 
reduction assessed with amyloid PET imaging (15). 
These findings prompted the initiation of a new Phase 3 
program using this five-fold higher doses. 

Mechanism matters

Amyloid is not a monolithic target but a family of 
monomers, oligomers, protofibrils, and fibrils; and 
different anti-Aβ antibodies target partially different 
species. The molecular dynamics by which targeting 
different species results in variable effects on plaque 
burden and brain volume loss are not well understood; 
however, these differential mechanisms may help explain 
the different trial effects observed. 

Solanezumab was hypothesized to remove brain 
amyloid through what is called the “peripheral sink 
hypothesis,” i.e., by increasing the clearance of soluble 
Aβ via the formation of antibody-Aβ complexes in the 
plasma. However, pharmacodynamic studies showed 
that a reduction of Aβ in the peripheral compartment 
failed to shift the equilibrium between Aβ species enough 
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to cause a substantial reduction of fibrillary Aβ in the 
brain (16); the possible beneficial effect of solanezumab 
on cognitive decline may nonetheless be mediated by 
its binding to smaller, diffusible forms. Other possible 
mechanisms of anti-Aβ antibodies include direct 
targeting of Aβ plaques or other toxic species of Aβ for 
removal or activating phagocytosis of Aβ by microglia 
(17).  Clinical trials of solanezumab in mild-moderate 
AD and in prodromal/mild AD failed to show a drug-
placebo difference and no effects on biomarkers were 
observed.  Solanezumab continues in the Anti-Amyloid 
treatment of Asymptomatic Alzheimer’s disease (A4) 
study of cognitively asymptomatic participants with 
positive amyloid imaging.

The effects of anti-Aβ antibodies on brain volume 
loss is poorly understood. In the EXPEDITION trials, 
treatment with solanezumab showed a modest but 
statistically insignificant slowing of brain atrophy (13). 
Gantenerumab produced no such effects on the measures 
collected (8). One theory suggests that driving down 
amyloid may itself be reflected as a reduction in brain 
volume. The effects on brain volume, however, could 
differ depending on which form of amyloid the antibody 
targets (e.g. plaques versus oligomeric forms). Further 
analysis of data from anti-Aβ antibody trials may help 
clarify this issue. The correlation of treatment-related 
brain volume loss and disease progression is also unclear.  

ARIA appears to be a manageable safety 
concern

The inc idence  of  amyloid-re la ted imaging 
abnormalities – effusion type (ARIA-E) associated 
with anti-Aβ antibody treatment has been a substantial 
concern in the development of these therapies (18). For 
example, in the aducanumab trials, ARIA-E was seen 
in more than one-third of participants, although these 
episodes were typically asymptomatic and resolved 
within 4-16 weeks without long-term sequelae. ARIA-E 
was also observed in about 10% of participants in the 
BAN2401 Phase 2 study, occurring primarily in the first 
three months of treatment. 

Recent studies suggest that ARIA-E can be safely 
managed by titrating drug to the target dose. For 
example, in the gantenerumab studies, titrating to the 
target dose reduced ARIA-E incidence in both APOE4 
carriers and non-carriers and the majority of episodes 
were asymptomatic. Other studies have suggested that 
APOE4 carriers are at higher risk for ARIA-E. While 
ARIA-E appears to be manageable, uncertainty remains 
about whether even a minimal risk could be problematic 
for preclinical AD patients, or whether ARIA-E 
occurs less frequently in earlier stages of disease or in 
individuals with lower levels of vascular amyloid. 

Although it may be challenging, it will be necessary 
to develop criteria that could be used in primary care 
settings for safely beginning treatment and monitoring 

for ARIA-E should an anti-Aβ monoclonal antibody 
treatment be approved for AD,. A better understanding 
of the mechanisms involved could relieve concerns 
among primary care physicians once these therapies 
become available.   

Interim and futility analyses are useful only if 
appropriately designed

Futility analyses are designed to protect participants 
from unnecessary exposure to drugs that have 
little chance of providing benefits, but if they result 
in premature termination of a trial, participants and 
sponsors alike – indeed, the entire field – may suffer 
adverse consequences from a failure to identify 
efficacious treatments and the failure to collect a complete 
dataset from the trial (19). The aducanumab Phase 3 
program is not the only example in the field in which 
interim analysis wrongly predicted futility, raising 
questions about the design and appropriateness of futility 
analyses. 

Among the fundamental tenets of futility analyses 
is that participants included in the analysis are 
representative of those in the full dataset and that 
drop-outs are equally distributed across all treatment 
groups. Protocol amendments made in the course of the 
aducanumab study, however, resulted in non-identical 
interim and final populations and in cohorts that had 
received different doses for different periods of time 

All futility analyses come with a price: loss of 
statistical power to demonstrate efficacy.  This cost 
must be carefully weighed against any benefits from 
early termination. While there are clear advantages to 
stopping early when failure is inevitable, the possibility 
of misleading futility analyses suggests that criteria for 
defining failure versus success need to be very carefully 
specified. To implement criteria for interim analyses 
requires a better understanding of the clinical-biological 
trajectories of disease progression in stratified patient 
populations (19, 20). Interim analyses could also 
benefit from looking at the totality of evidence and by 
aggregating signals to reduce noise.       

Responder analyses could help identify 
subgroup differences

To determine the disease stage at which a treatment 
may be efficacious, the optimal duration of treatment, 
and other patient characteristics that may affect efficacy, 
responder analyses of trial data and data from open-label 
extension studies can be valuable. Post-hoc exploratory 
data analyses may yield improved understanding of 
study results and inform the design of future studies. For 
example, in the SCarlet RoAD study of gantenerumab, an 
exploratory analysis that classified participants according 
to whether they were slow or fast progressors suggested 
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that fast progressors showed a greater exposure-
dependent slowing of clinical and cognitive decline with 
treatment (8). While not a classic responder analysis, 
the exploration of the faster progressing subset allowed 
modeling related to a drug-placebo difference and helped 
to define inclusion criteria for the ongoing Phase 3 
GRADUATE program with higher dose of gantenerumab.

Moving forward with amyloid-based therapies

Genetic, neuropathologic, biochemical, and now 
clinical trials support the amyloid hypothesis of AD while 
recognizing that downstream pathological processes 
contribute importantly to the development of the disease 
(6).  Many questions remain to be answered in order 
to translate the amyloid hypothesis into efficacious 
therapies. For example, further research is needed to 
determine which Aβ species are most important to target, 
whether relevant Aβ species change over the course 
of disease, if there is an optimal time for targeting a 
particular Aβ species, and whether at some point amyloid 
becomes less relevant or irrelevant. Developing a larger 
repertoire of biomarkers to predict disease onset and 
progression, e.g. microglial activation biomarkers, may 
help clarify the role of amyloid-related mechanisms as 
well as other mechanisms in disease progression (21).  
Preliminary data from the monoclonal antibody trials 
suggest there are “downstream” effects on cerebrospinal 
fluid levels of neurofilament light, neurogranin, and tau.  
These may be crucial measures of the biological effects of 
interventions and that can eventually be compared across 
trials.

An effective treatment may also require an 
Aß-targeting drug in combination with a drug targeting 
another mechanism (e.g. neuroinflammation) or two 
drugs that target different amyloid mechanisms (e.g. 
production and clearance of Aβ) (22). Investigators have 
explored targeting Aß in combination with tau, the 
protein found in the neurofibrillary tangles that along 
with amyloid plaques represent the major pathological 
hallmarks of AD. Moving this approach forward, 
however, will require a better understanding of the value 
of various tau-related targets, the relationship of amyloid 
to the level of tau burden as well as the time lag between 
amyloid deposition, tau deposition, and cognitive 
impairment (23). Employing tau PET studies in clinical 
trials may help define these aspects of the role of tau in 
AD (24,25). Other tau biomarkers are in development. 
For example, Walsh and colleagues have shown that an 
N-terminal fragment of tau (NT1) and p-tau in plasma 
are significantly increased in AD and mild cognitive 
impairment (MCI) (26).

Analysis of data from several failed clinical trials of 
amyloid-targeting drugs suggest that to slow or prevent 
disease progression, it may be necessary to intervene 
at very early, pre-symptomatic stages of the disease 
(27,28). Studies currently underway to test this include 

the A4 study in clinically normal older individuals 
with elevated amyloid levels on screening PET; and 
the AHEAD 3-45 study in clinically normal individuals 
with elevated or intermediate amyloid. Other prevention 
trials are underway in clinically normal participants at 
increased genetic risk of developing AD, including the 
Alzheimer’s Prevention Initiative (API) Colombia Trial 
(20). [The DIAN-TU studies involving both clinically 
normal and symptomatic autosomal dominant mutation 
carriers recently reported negative topline results.] The 
challenges inherent in these prevention trials include 
the difficulty of detecting a slowing of progression in 
cognitively normal individuals and the resulting large 
sample size and long trial durations required; the hope of 
preventing AD has motivated many individuals around 
the world to volunteer for these studies.             

Very early intervention, including primary prevention, 
may be more feasible with active vaccination or oral 
therapy rather than passive immunotherapy requiring 
repeated intravenous or subcutaneous administration.  
Active vaccination against Aß remains a plausible 
strategy (e.g. CAD-106; UB-311).  Orally bioavailable 
BACE inhibitor programs have been halted with concern 
about observations of cognitive worsening in trials; 
however, evidence that this cognitive toxicity is dose-
related and reversible raises hope that viable regimens 
may eventually move forward.             

Conclusions

The termination of multiple clinical trials for futility 
or adverse events has had a major impact on the AD 
clinical research enterprise. However, evidence strongly 
supports amyloid as a viable target although not the only 
important target. Given the complexity of AD pathology, 
combination treatment will likely be needed.  If antibody 
trials are sufficiently positive, they could represent a 
good first step towards combination treatment and lead 
to financial coverage and use of amyloid PET, which 
would be a major advance for the clinical care of AD.

To optimize the potential benefits and reduce the 
potential risks to participants as much as possible, 
methodological improvements in the design and conduct 
of clinical trials are needed. For example, adaptive dose 
finding studies may result in more patients assigned 
to an effective dose and avoid exposure of patients to 
ineffective doses. In addition, since disease modification 
depends on protecting neurons from the pathology, a 
better understanding of neuroprotection, the relationship 
of the biological underpinnings of the aging process 
(30), and the development of intermediate biomarkers of 
neuroprotection are needed. Advancing understanding 
of the complexity underlying the development of AD 
and potential interventions that could slow or halt the 
disease pathophysiological progression will require 
more discovery science as well as increased use of 
platform trials. Public-private partnerships with strong 
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collaborations and data sharing will be necessary to 
accelerate these efforts, along with broad public 
engagement. 
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